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Abstract
Detecting dementia using human speech is promising but

faces a limited data challenge. While recent research has shown
general pretrained models (e.g., BERT) can be applied to im-
prove dementia detection, the pretrained model can hardly be
fine-tuned with the available small dementia dataset as that
would raise the overfitting problem. In this paper, we propose
a domain-aware intermediate pretraining to enable a pretraining
process using a domain-similar dataset that is selected by in-
corporating the knowledge from the dementia dataset. Specif-
ically, we use pseudo-perplexity to find an effective pretrain-
ing dataset, and then propose dataset-level and sample-level
domain-aware intermediate pretraining techniques. We further
employ information units (IU) from previous dementia research
and define an IU-pseudo-perplexity to reduce calculation com-
plexity. We confirm the effectiveness of perplexity by showing
a strong correlation between perplexity and accuracy using 9
datasets and models from the GLUE benchmark. We show that
our domain-aware intermediate pretraining improves detection
accuracy in almost all cases. Our results suggested that the dif-
ference in text-based perplexity values between patients with
Alzheimer’s Disease (AD) and Healthy Control (HC) is still
small, and the perplexity incorporating acoustic features (e.g.,
pause) may make the pretraining more effective.
Index Terms: Dementia, intermediate pretraining, perplexity

1. Introduction
Detecting dementia via spontaneous speech is faster and less
costly compared to conventional cognitive assessment methods
that require medical assistance or equipment. The Alzheimer’s
Dementia Recognition through Spontaneous Speech (ADReSS)
challenge [1, 2] prepared spontaneous speech datasets from
patients using a picture description task [3], and enable re-
searchers to develop dementia detection models to classify pa-
tients with AD and HC or infer their Mini-Mental State Ex-
amination (MMSE) scores [4, 5]. Researchers have discov-
ered that transfer learning can significantly enhance the accu-
racy of detection [6, 4, 5, 7], e.g., using BERT [8]. Transfer
learning usually has two implementations: i) use of the output
of the pretrained model as a fixed feature extractor, but can-
not incorporate any knowledge from the downstream task into
the pretrained model; or ii) fine-tune the pretrained model with
the downstream dataset, but when the downstream dataset is
small, we encounter the overfitting problem. For example, re-
cent ADReSS datasets are small, containing 108 training sam-
ples and 48 testing samples. Recent research showed that the
benefits from additional intermediate pretraining increase when

having additional domain data or unlabeled data from the down-
stream task [9, 10, 11, 12, 13, 14, 15]. When these data are
not available, researchers proposed to find additional domain-
similar datasets for pretraining to improve the performance of
the downstream task [9, 11]. They proposed to measure the
domain similarity between the candidate dataset and the down-
stream dataset via qualitative or quantitative metrics. With the
dataset, depending on the availability of labels, supervised or
self-supervised intermediate pretraining can be applied [10].

In dementia research, finding a domain-similar dataset is a
challenge. Available dementia datasets are small in size [16,
17], and finding a large speech dataset that is qualitatively rele-
vant to dementia is challenge. In this paper, we aim to address
a unique challenge, i.e., how could we implement intermediate
pretraining without a large dementia-related dataset?

We first introduce a metric to evaluate the similarity be-
tween the candidate dataset and the dementia dataset, and then
use the metric to select the candidate dataset for pretraining.
Specifically, we calculate pseudo-perplexity [18] by inputting a
dataset Y into a model pretrained with dataset X. We consider
choosing more similar datasets X and Y will produce a small
value of the above pseudo-perplexity. To confirm this, we ex-
ploit 9 pretrained models from the GLUE benchmark [19]. We
demonstrate a strong correlation between the accuracy of de-
mentia detection and the pseudo-perplexity generated by each
pretrained model, showing pseudo-perplexity is an effective
metric in selecting pretraining datasets for enhancing dementia
detection. In addition, we can select multiple pretrained mod-
els using pseudo-perplexity and jointly incorporate them into
dementia detection without incurring the overfitting problem.

We further propose a novel sample-level pretraining tech-
nique to monitor each pretraining step. Specifically, in each pre-
training step, we decide to accept (or reject) the update by the
samples depending on whether the conditions set on pseudo-
perplexity are met (or not met). Our goal is to include the
samples for pretraining that make the model better perform the
downstream task. While calculating pseudo-perplexity in each
step is time-consuming, we further incorporate the information
units (IU) to define a new IU-based pseudo-perplexity, and the
time of calculation is largely reduced. Information units have
been long studied in dementia research as an effective linguistic
feature [20]. Our contributions can be summarized as follows:

First, we introduce a new way of using pseudo-perplexity to
evaluate the domain-similarity between a candidate dataset and
the dementia dataset. We found a strong correlation between
the pseudo-perplexity and the accuracy of dementia detection,
thus enabling us to implement intermediate pretraining by the
guidance of pseudo-perplexity in absence of dementia-related



datasets.
Second, we define and evaluate a new IU-pseudo-perplexity

metric to reduce the calculation complexity. This new metric is
also shown to be more accurate than pseudo-perplexity because
information units are known as an effective linguistic feature.

Third, we propose a new sample-level pretraining technique
where the model decides to accept or reject the update in each
pretraining step based on the change of the perplexity. This
technique achieves the best performance in almost all cases.

2. Background
BERT [8] is pretrained with large-scale datasets Wikipedia and
Bookcorpus using self-supervised learning. It consists of two
parts: transformer encoders and classification layers. The trans-
former encoders take tokens as input and output the hidden rep-
resentations for each token. The classification layers take hid-
den representations as inputs and produce the task-related out-
puts using self-supervised learning. When using fine-tuning, the
classification layers are replaced with new ones and trained us-
ing supervised learning. When using the fixed feature extractor,
hidden representations are used for training a new classifier.

GLUE [19] is well-known benchmark for natural language
understanding. It consists of 9 datasets in various domains, in-
cluding miscellaneous, movie reviews, news, social QA ques-
tions, Wikipedia and fiction books. In this paper, we will evalu-
ate these pretraining datasets and models in dementia detection.

ADReSS [1] datasets were collected from AD and HC
patients. The patients were required to verbally describe the
Cookie Theft picture, and their speech were recorded and tran-
scribed by a human. The datasets are labeled with AD and HC
labels. We will use the transcripts from ADReSS 2020, and
strictly follow the use of ADReSS training and testing datasets
for calculating accuracy.

3. Perplexity-based domain similarity
Selecting datasets similar to a given downstream dataset is cru-
cial for intermediate pretraining. Measuring the similarity of
two datasets can use a qualitative method. For example, the
emotion domain is relevant to sarcasm, and thus emotion detec-
tion model can be implemented as an intermediate pretraining
for sarcasm detection model [11]. Available dementia datasets
are small in size, and we hardly find a large speech dataset that is
qualitatively relevant to dementia. Measuring the similarity of
two datasets can also use a simple quantitative method, e.g., cal-
culating the overlapped vocabulary [9]. The vocabulary-based
method focuses on the vocabulary-level data content from the
speech task but ignores the relation among words and other lin-
guistic features, which may be specifically important to demen-
tia detection. We aim to propose a new quantitative method to
find large datasets that are similar to the given dementia dataset.

3.1. Pseudo-perplexity

Perplexity measures how well a language model models a
dataset. Given a model and a dataset, a perplexity value can
be calculated. Conventional perplexity fits autoregressive mod-
els running in a single-direction manner but does not fit BERT
running in a bidirectional manner [21]. We thus exploit pseudo-
perplexity specifically proposed for bidirectional BERT. In the
calculation of the pseudo-perplexity, we use the [MASK] to-
ken of BERT to mask one token at each time and calculate the
corresponding cross-entropy loss with the transformer encoders

and self-supervised classification layers of BERT. Denote all to-
kens of a sample as W , and denote W with t-th token masked
as W\t =

�
w1, · · · ,wt�1, [MASK],wt+1, · · · ,w|W |

�
. The

cross-entropy (CE) loss of each token in a sample are added to
obtain a pseudo-loglikelihood (PLL) score, as shown below

PLL(W ) :=
X

wt2W

CE
�
wt | W\t

�
(1)

To obtain the perplexity on a dataset W, we calculate the
pseudo-loglikelihood for samples in a dataset. Denote the to-
tal number of tokens as N , we have the pseudo-perplexity as

PPPL(W) := exp

 
� 1
N

X

W2W
PLL(W )

!
(2)

3.2. IU-pseudo-perplexity

The calculation complexity of pseudo-perplexity is associated
with the number of tokens in the dataset. Such calculation can
be expensive if the tokens of a dataset are many. To reduce
the complexity, we define a new IU-pseudo-perplexity based on
information units. Information units have been used as an effec-
tive linguistic feature for dementia detection [22, 23]. Specifi-
cally, we used 35 information units from previous research [20],
denoted by I . Then, we mask only the tokens of IUs in the cal-
culation. Denote the number of tokens of IUs as N 0, we have

IU-PLL(W ) :=
X

wt2W&wt2I

CE
�
wt | W\t

�
(3)

IU-PPPL(W) := exp

 
� 1
N 0

X

W2W
IU-PLL(W )

!
(4)

Models PPPL IU-PPPL Accuracy
BERT 6.75 30.69 0.83
COLA 7.97 39.74 0.79
MNLI 11.65 81.18 0.75
MRPC 7.42 47.29 0.83
QNLI 8.88 65.99 0.81
QQP 12.21 88.63 0.73
RTE 7.12 34.41 0.83
SST2 8.70 44.78 0.85
STSB 20.19 186.18 0.63
WNLI 6.69 30.94 0.83

Figure 1: Correlation between perplexity and accuracy

3.3. Correlating perplexity with accuracy

We propose to use perplexity to measure the similarity of two
datasets: if a model trained on dataset X produces smaller per-
plexity on dataset Y, then datasets X and Y are determined to be
more similar. Our intuition is that using a more similar dataset
for pretraining would result in a better performance in the down-
stream task. To confirm this, we exploited 9 different datasets
from the GLUE benchmark and their corresponding models
pretrained on BERT. For perplexity calculation, we used fine-
tuned transformer encoder and original self-supervised classi-
fication layers. For accuracy calculation, we used fine-tuned
transformer encoder as a fixed feature extractor to extract fea-
tures from ADReSS dataset, then trained a Support Vector Ma-
chine (SVM) using ADReSS training dataset, and generated ac-
curacy using ADReSS testing dataset. We report PPPL, IU-
PPPL and accuracy in Figure 1. We found a strong correlation
between PPPL and accuracy and between IU-PPPL and accu-
racy. We fit regression lines with perplexity and accuracy and
obtain small Mean Square Error (MSE) of 0.00367 and 0.00446
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Figure 2: Proposed sample-level domain-aware intermediate pretraining (condition 1)

for PPPL and IU-PPPL, respectively. In terms of calculation
complexity, one-time calculation of PPPL and IU-PPPL took
94.41s and 11.33s, respectively, using a single V100 GPU.

4. Domain-aware intermediate pretaining
In this section, we propose dataset-level and sample-level
domain-aware intermediate pretraining techniques.

4.1. Dataset-level domain-aware intermediate pretraining

We propose to select multiple datasets that are determined sim-
ilar to a given downstream task to implement an intermediate
pretraining. Specifically, we concatenate the hidden representa-
tions from different models pretrained with the selected datasets
and then feed the joint representation into a SVM built for a
downstream task. Note that, there are many datasets and pre-
trained models, and enumerating all combinations is infeasible.
In addition, using testing accuracy to select combinations will
overfit the testing set. Our approach aims to select pretraining
model based on the ranking of the perplexity. Pretrained models
with smaller perplexity are considered to produce better perfor-
mance. Such perplexity-based selection neither relies on accu-
racy nor labels of training dataset and would be more beneficial
when more unlabeled downstream data is available.

4.2. Sample-level domain-aware intermediate pretraining

In the intermediate pretraining process, not all samples in the
pretraining dataset can be used to help the model better model
the downstream dataset. We further propose a sample-level
domain-aware intermediate pretraining technique to control the
pretraining process at a fine-grained level. As shown in Figure
2, in each pretraining step from Mk to Mk+1, we calculate the
perplexity values PPPLk and PPPLk+1 by inputting the down-
stream dataset (i.e., dementia dataset D) to the models before
and after the update. If the perplexity value decreases after the
update, i.e., PPPLk+1 < PPPLk, we consider the current batch
of samples helps the model to better model the dementia dataset
and thus accept the update. Otherwise, we reject the update and
move on with the next batch of samples.

ADReSS dataset consists of speech data from patients with
AD and HC. We denote the datasets of AD and HC patients as
DAD and DHC , where DAD +DHC = D. Previous research
has exploited perplexity as a feature to design dementia detec-
tion [24, 25, 26]. Thus, we consider the perplexity for DAD and
DHC may exhibit a difference that can be used for dementia
detection. Denote PPPLk,AD and PPPLk,HC as the perplexity
values generated by the model at step k with the input of DAD

and DHC , respectively. We set five conditions to control the

pretraining process.
Condition 1. PPPLk+1 < PPPLk: the model better models

the whole dementia dataset.
Condition 2. PPPLk+1,HC < PPPLk,HC : the model better

models the dataset of HC patients.
Condition 3. PPPLk+1,AD < PPPLk,AD: the model better

models the dataset of AD patients.
Condition 4. PPPLk+1,AD - PPPLk+1,HC < PPPLk,AD -

PPPLk,HC : the model have larger perplexity difference on the
datasets of AD and HC patients after the update.

Condition 5. PPPLk+1,HC < PPPLk,HC and PPPLk+1,AD

> PPPLk,AD: the model better models the dataset of HC pa-
tients, but is more confused with the dataset of AD patients.

The sample-level domain-aware intermediate pretraining
with these conditions can ensure the model produces the desired
perplexity results on the downstream task.

5. Experiments
In this section, we introduce the implementation details and re-
sults from our proposed pretraining techniques.

5.1. Implementation details

We implemented our models with PyTorch and Hugging Face
Transformers. For fine-tuning BERT with the GLUE datasets,
we used epoch 3 and batch size 32. We averaged BERT hidden
representations through time dimension and input the result to
SVM with RBF kernel. The calculation of perplexity and accu-
racy can be referred to in Section 3.3.

5.2. Results from dataset-level pretraining

Table 2 shows the results from the dataset-level pretraining. To
select the domain-similar models, we rank the pretrained mod-
els by pseudo-perplexity and IU-pseudo-perplexity from lowest
to highest. We combine the representations of two models or
three models. For the two-model combination case, we selected
any two from the top three. For the three-model combination,
we selected any three from the top four. The accuracy result is
generated from a SVM model trained and tested using ADReSS
datasets. We have the following observations: i) The combined
models improve the accuracy; for all of these top perplexity
combinations, the accuracy is larger or equal to the worst per-
formance of any single model in the combination. ii) Perplexity
is an effective metric to select combinations for strong perfor-
mance. For example, the baseline accuracy for RTE and MRPC
are both 83%, and they are ranked 2 and 3 by pseudo-perplexity.
The combination of these two models boosts the accuracy to
85%. Using 1st, 2nd, and 4th models ranked by IU-pseudo-



Table 1: Results from sample-level pretraining using IU-PPPL

Baseline Condition 1: ALL Condition 2: HC only Condition 3: AD only Condition 4: HC-AD Condition 5: HC, AD
Model HC AD Acc ALL HC AD Acc HC AD Acc HC AD Acc HC AD Acc HC AD Acc
COLA 35.07 45.04 0.79 28.69 27.38 30.06 0.79 26.25 30.08 0.83 27.56 29.81 0.81 28.76 33.67 0.79 29.46 31.96 0.83
MNLI 77.19 85.37 0.75 26.57 26.10 27.05 0.79 22.73 25.91 0.77 24.91 25.66 0.77 29.67 32.22 0.83 27.29 35.57 0.79
MRPC 42.83 52.22 0.83 30.69 29.46 31.96 0.83 28.94 31.41 0.83 29.72 31.52 0.83 29.68 32.19 0.83 29.46 31.96 0.83
QNLI 64.20 67.83 0.81 29.74 28.45 31.10 0.81 28.04 29.60 0.81 29.24 31.71 0.83 46.06 54.58 0.79 28.32 33.82 0.81
QQP 82.17 95.61 0.73 28.39 27.84 28.95 0.81 22.29 23.69 0.81 30.41 31.38 0.81 29.78 34.17 0.79 28.37 33.58 0.79
RTE 33.91 34.92 0.83 29.27 27.80 30.82 0.81 28.71 31.91 0.83 25.92 27.33 0.79 29.48 32.00 0.83 29.09 32.42 0.83
SST2 40.87 49.07 0.85 26.51 25.26 27.82 0.85 27.32 30.33 0.85 29.46 31.96 0.83 37.81 44.07 0.83 29.09 32.93 0.83
STSB 147.70 234.68 0.63 30.68 29.28 32.14 0.83 29.46 31.96 0.83 29.75 31.84 0.83 29.46 31.96 0.83 29.46 31.96 0.83
WNLI 29.98 31.94 0.83 30.63 29.59 31.70 0.83 29.44 31.65 0.83 29.46 31.96 0.83 29.46 31.96 0.83 29.46 31.96 0.83

Table 2: Results from dataset-level pretraining

Models IU-PPPL PPPL Accuracyrankings rankings
WNLI (0.83), RTE (0.83) 1 2 1 2 0.83

WNLI (0.83), COLA (0.79) 1 3 1 4 0.79
RTE (0.83), COLA (0.79) 2 3 2 4 0.81

WNLI (0.83), MRPC (0.83) 1 5 1 3 0.83
RTE (0.83), MRPC (0.83) 1 5 2 3 0.85

WNLI (0.83), RTE (0.83), COLA (0.79) 1 2 3 1 2 4 0.83
WNLI (0.83), RTE (0.83), SST2 (0.85) 1 2 4 1 2 5 0.87
WNLI (0.83), COLA (0.79), SST2 (0.85) 1 3 4 1 4 5 0.83
RTE (0.83), COLA (0.79), SST2 (0.85) 2 3 4 2 4 5 0.85
WNLI (0.83), RTE (0.83), MRPC (0.83) 1 2 5 1 2 3 0.83

WNLI (0.83), MRPC (0.83), COLA (0.79) 1 5 3 1 3 4 0.79
RTE (0.83), MRPC (0.83), COLA (0.79) 2 5 3 2 3 4 0.81

perplexity, the combined model achieved the highest accuracy
of 87%. iii) IU-pseudo-perplexity is slightly more effective than
pseudo-perplexity. We averaged the ranking numbers for those
combinations with accuracy � 83% (BERT baseline). The av-
erage ranking number is 2.52 for IU-pseudo-perplexity, slightly
better than 2.57 for pseudo-perplexity.

5.3. Results from sample-level pretraining

In Table 1, the baseline results show the perplexity values of
these pretrained models on the dataset from HC is smaller than
those corresponding to AD. It means that the baseline interme-
diate pretrained models are capable of recognizing the differ-
ence between AD and HC. Now we examine the results from
sample-level pretraining. i) Looking at conditions 1 and 2, we
found that sample-level pretraining on ALL or HC improves or
maintains the accuracy. We count 2 conditions and 9 models for
a total of 18 cases. Compared to the baseline, sample-level pre-
training improves or maintains the accuracy in 17 of 18 cases.
ii) Looking at conditions 2 and 3, we found that lowering the
perplexity for either AD dataset or HC dataset also lowers the
perplexity for the other group. This shows that the perplexity
values of AD dataset and HC dataset are correlated. iii) Look-
ing at conditions 4 and 5, our goal is to diversify the perplexity
of AD and HC datasets. However, in condition 4, the model pro-
duces a larger perplexity of HC datasets, and thus the detection
accuracy is not significantly increased. In condition 5, our inter-
mediate pretraining technique hardly enlarges the difference in
perplexity of the two groups, and the perplexity values are sim-
ilar to conditions 1-3. In this case, most updates were rejected.

6. Discussion
6.1. Diversify perplexity for different labels

The significant difference of perplexity in datasets with differ-
ent labels can be used to implement accurate classifications,
e.g., fact checking [21]. In dementia research, our dataset-level
and sample-level pretraining produce different perplexity val-
ues for AD and HC. In general, perplexity is lower for HC
than for AD, which is intuitive because pretraining datasets are

more similar to datasets from HC. However, the difference be-
tween AD and HC is small, and thus the improvement by pre-
training is limited. One possible reason is that the dataset is
generated using a picture description task, so that the AD and
HC datasets are domain-similar, and much different from the
pretraining datasets. Our current definition of perplexity fo-
cuses on the transcripts, which are highly related to the con-
tent. To make the proposed pretraining more effective, we en-
vision a new representation to make AD and HC datasets more
domain-different. For example, we will study pause represen-
tations [4, 27] and generate large-scale text with pause repre-
sentations from speech [27]. The new perplexity incorporating
pause may be diversified between AD and HC datasets, thus
improving the corresponding pretraining.

6.2. Other use cases

Domain-aware intermediate pretraining introduces a third way
of implementing transfer learning other than using the fixed fea-
ture extractor and fine-tuning. We envision our proposed tech-
nique can be widely applied to downstream tasks with limited
available datasets or limited labeled datasets. For example, in
the medical domain, consistent data collection and labeling are
expensive, and these datasets are usually much smaller than
pretraining datasets. Our proposed techniques can incorporate
knowledge from the downstream task into the pretraining pro-
cess even with a small amount of data and even without any la-
bels. We envision such a new implementation of transfer learn-
ing enables wide applicability to tasks with limited data and
with no available in-domain or domain-similar datasets.

7. Conclusions
In this paper, we proposed domain-aware intermediate pre-
training to address the weakness of the current implementa-
tion of transfer learning in dementia detection. We first in-
troduced a pseudo-perplexity to measure the domain similarity
and showed its high correlation with accuracy. We further de-
fine a new pseudo-perplexity using information units, a proven
effective linguistic feature in dementia detection, which has a
reduced calculation complexity. Based on the perplexity, we
proposed dataset-level and sample-level domain-aware interme-
diate pretraining: the dataset-level selects the pretraining model
using the ranking of perplexity; the sample-level selects sam-
ples in each pretraining step to ensure expected perplexity. We
demonstrated that domain-aware intermediate pretraining out-
performed conventional pretraining and intermediate pretrain-
ing. We envision such a new implementation of transfer learn-
ing can apply to other downstream tasks with limited data.
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